
Appendix C Special functions

C.1 Modified Bessel functions

The modified Bessel function of the second kind with order parameter Æ 2 R ad-
mits the Fourier-based representation [AS72]
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the form of the variance-gamma distribution around the origin, we can rely on the
following expansion which includes a few more terms:
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At the other end of the scale, its asymptotic behavior is

KÆ(x) ª
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e°x as x !+1.

C.2 Gamma function

Euler’s gamma function constitutes an analytic extension of the factorial function
n! = °(n +1) to the complex plane. It is defined by the integral

°(z) =
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which is convergent for Re(z) > 0. Specific values are °(1) = 1 and °(1/2) =
p
º. The

gamma function satisfies the functional equation

°(z +1) = z°(z) (C.1)



336 Special functions

which is compatible with the recursive definition of the factorial n! = n(n °1)!. An-
other useful result is Euler’s reflection formula
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,

By combining the above with (C.1), we obtain
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which makes an intriguing connection with the sinus cardinalis function. There is a
similar link with Euler’s beta function
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with Re(z1),Re(z2) > 0.
°(z) also admits the well-known product decomposition
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where ∞0 is the Euler-Mascheroni constant. The above allows us to derive the expan-
sion
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which is directly applicable to the likelihood function associated with the Meixner
distribution. Also relevant to that context is the integral relation
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for r > 0 and z 2C, which can be interpreted as a Fourier transform by setting z =°j!.
Euler’s digamma function is defined as
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while its mth order derivative

√(m)(z) = dm+1

dzm+1 log°(z) (C.6)

is called the polygamma function of order m.

C.3 Symmetric-alpha-stable distributions

The SÆS pdf of degree Æ 2 (0,2] and scale parameter s0 is best defined via its char-
acteristic function
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Alpha-stable distributions do not admit closed-form expressions, except for the spe-
cial cases Æ = 1 (Cauchy) and 2 (Gauss distribution). Moreover, their absolute mo-
ments of order p, E{|X |p }, are unbounded for p >Æ, which is characteristic of heavy-
tailed distributions. We can relate the (symmetric) ∞th-order moments of their char-
acteristic function to the gamma function by performing the change of variable t =
(s0!)Æ, which leads to
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By using the correspondence between Fourier-domain moments and time-domain
derivatives, we use this result to write the Taylor series of p(x;Æ, s0) around x = 0 as
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which involves even terms only (because of symmetry). The moment formula (C.7)
also yields a simple expression for the slope of the score at the origin, which is given
by
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Similar techniques are applicable to obtain the asymptotic form of p(x;Æ, s0) as x
tends to infinity [Ber52, TN95]. To characterize the tail behavior, it is sufficient to
consider the first term of the asymptotic expansion
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which emphasizes the algebraic decay of order (Æ+1) at infinity.


