Appendix C Special functions
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C.2

Modified Bessel functions

The modified Bessel function of the second kind with order parameter « € R ad-
mits the Fourier-based representation [AS72]

e—ju)x
Ka(w) :f[R(1+—x2)W| dx.

1
It has the property that K, (x) = K_4(x). A special case of interest is K% (x) = (%) Ze™*,

The small scale behavior of K (x) is Ky (x) ~ % (%)a as x — 0. In order to determine

the form of the variance-gamma distribution around the origin, we can rely on the
following expansion which includes a few more terms:
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Kq(x) =x¢ (2“—1r(a) - zar—_wlz)x + O(x4))
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+x%27% 1T (—a) + TTCox + O(x4)).
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At the other end of the scale, its asymptotic behavior is

i —X
Ky(x) ~4/—e " asx — +oo.
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Gamma function

Euler’s gamma function constitutes an analytic extension of the factorial function
n!=T(n+1) to the complex plane. It is defined by the integral

+00
T'(2) =f “let dy,
0

which is convergent for Re(z) > 0. Specific values are I'(1) = 1 and I'(1/2) = \/m. The
gamma function satisfies the functional equation

I'(z+1)=2zI'(2) (C.1)
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which is compatible with the recursive definition of the factorial n! = n(n—1)!. An-
other useful result is Euler’s reflection formula

ra-2r@) =—,
sin(mrz)

By combining the above with (C.1), we obtain
sin(mz) 1

7z TU-2T(1+2)
which makes an intriguing connection with the sinus cardinalis function. There is a
similar link with Euler’s beta function

sinc(z) = (C.2)

1
B(zl,ZZ):f A1 -p2 1 dr (C.3)
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with Re(z;),Re(zp) > 0.
I'(z) also admits the well-known product decomposition

e ro? X z2\71
I'(z) = ,El(Hﬁ) e (C.4)

where ¥y is the Euler-Mascheroni constant. The above allows us to derive the expan-
sion

~log|T(2)[* = 2ygRe(z) +log|z[* + Y (log|1 +§‘ -2 €@ ),
n=1

n

which is directly applicable to the likelihood function associated with the Meixner
distribution. Also relevant to that context is the integral relation

f‘I“(r+'x)‘2ejzxdx—27rl“(r)( 1 )r
Rl 2 ) - 2cosh §

for r > 0 and z € C, which can be interpreted as a Fourier transform by setting z = —jw.
Euler’s digamma function is defined as

d I'(z)
= —loel’ = —, .
¥ () 1108 (2) T (C.5)
while its mith order derivative
m) dm+1
m —
py(z) = Wlogf(z) (C.6)

is called the polygamma function of order m.

Symmetric-alpha-stable distributions

The SaS pdf of degree «a € (0,2] and scale parameter sy is best defined via its char-

acteristic function

_ a d(,l)
P(x;oc,SO):fe o0l glex —
R 27
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Alpha-stable distributions do not admit closed-form expressions, except for the spe-
cial cases a = 1 (Cauchy) and 2 (Gauss distribution). Moreover, their absolute mo-
ments of order p, E{| X|”}, are unbounded for p > &, which is characteristic of heavy-
tailed distributions. We can relate the (symmetric) yth-order moments of their char-
acteristic function to the gamma function by performing the change of variable ¢ =
(sow)%, which leads to

-y-1 s(;y_ll"(Y_H)
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(C.7)

By using the correspondence between Fourier-domain moments and time-domain
derivatives, we use this result to write the Taylor series of p(x; «, s¢) around x = 0 as

% skl k41 L |x1 2K
p(x;a,so) = r D%, (C.8)
k
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which involves even terms only (because of symmetry). The moment formula (C.7)
also yields a simple expression for the slope of the score at the origin, which is given
by

Px©@ _ T(3)

px(©0)  s2r(L)

Similar techniques are applicable to obtain the asymptotic form of p(x;a, sp) as x

tends to infinity [Ber52, TN95]. To characterize the tail behavior, it is sufficient to
consider the first term of the asymptotic expansion

@ (0) =~

1 . (T
px;a,s0) ~—=T(a+1) s1n(—) as x — oo, (C.9)
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which emphasizes the algebraic decay of order (a + 1) at infinity.



