
2 Roadmap to the monograph

The writing of this book was motivated by our desire to formalize and extend the
ideas presented in Section 1.3 to a class of differential operators much broader than
the derivative D. Concretely, this translates into the investigation of the family of
stochastic processes specified by the general innovation model that is summarized
in Figure 2.1. The corresponding generator of random signals (upper part of the dia-
gram) has two fundamental components: (1) a continuous-domain noise excitation
w , which may be thought of as being composed of a continuum of i.i.d. random
atoms (innovations), and (2) a deterministic mixing procedure (formally described
by L°1) which couples the random contributions and imposes the correlation struc-
ture of the output. The concise description of the model is Ls = w where L is the
whitening operator. The term “innovation” refers to the fact that w represents the
unpredictable part of the process. When the inverse operator L°1 is linear shift-
invariant (LSI), the signal generator reduces to a simple convolutional system which
is characterized by its impulse response (or, equivalently, its frequency response). In-
novation modeling has a long tradition in statistical communication theory and sig-
nal processing; it is the basis for the interpretation of a Gaussian stationary process
as a filtered version of a white Gaussian noise [Kai70, Pap91].

In the present context, the underlying objects are continuously-defined. The in-
novation model then results from defining a stochastic process (or random field when
the index variable r is a vector in Rd ) as the solution of a stochastic differential equa-
tion (SDE) driven by a particular brand of noise. The nonstandard aspect here is that
we are considering the innovation model in its greatest generality, allowing for non-
Gaussian inputs and differential systems that are not necessarily stable. We shall
argue that these extensions are essential for making this type of modeling compat-
ible with the latest developments in signal processing pertaining to the use of wave-
lets and sparsity-promoting reconstruction algorithms. Specifically, we shall see that
it is possible to generate a wide variety of sparse processes by replacing the tradi-
tional Gaussian input by some more general brand of (Lévy) noise, within the lim-
its of mathematical admissibility.We shall also demonstrate that such processes ad-
mit a sparse representation in a wavelet basis under the assumption that L is scale-
invariant. The difficulty there is that scale-invariant SDEs are inherently unstable
(due to the presence of poles at the origin); yet, we shall see that they can still result
in a proper specification of fractal-type processes, albeit not within the usual frame-
work of stationary processes. The nontrivial aspect of these generalizations is that
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Figure 2.1 Innovation model of a generalized stochastic process. The process is generated
by application of the (linear) inverse operator L°1 to a continuous-domain white-noise
process w . The generation mechanism is general in the sense that it applies to the complete
family of Lévy noises, including Gaussian noise as the most basic (non-sparse) excitation.
The output process s is stationary iff. L°1 is shift-invariant.

they necessitate the resolution of instabilities—in the form of singular integrals. This
is required not only at the system level, to allow for non-stationary processes, but also
at the stochastic level because the most interesting sparsity patterns are associated
with unbounded Lévy measures.

Before proceeding with the statistical characterization of sparse stochastic pro-
cesses, we shall highlight the central role of the operator L and make a connection
with spline theory and the construction of signal-adapted wavelet bases.

2.1 On the implications of the innovation model

To motivate our approach, we start with an informal discussion, leaving the tech-
nicalities aside. The stochastic process s in Figure 2.1 is constructed by applying the
(integral) operator L°1 to some continuous-domain white noise w . In most cases of
interest, L°1 has an infinitely-supported impulse response which introduces long-
range dependencies. If we are aiming at a concise statistical characterization of s, it
is essential that we somehow invert this integration process, the ideal being to apply
the operator L which would give back the innovation signal w that is fully decoupled.
Unfortunately, this is not feasible in practice because we do not have access to the
signal s(r ) over the entire domain r 2 Rd , but only to its sampled values on a lattice
or, more generally, to a series of coefficients in some appropriate basis. Our analysis
options are essentially two fold, as described in Sections 2.1.1 and 2.1.2.

2.1.1 Linear combination of sampled values

Given the sampled values s(k),k 2 Zd , the best we can aim at is to implement a
discrete version of the operator L, which is denoted by Ld. In effect, Ld will act on
the sampled version of the signal as a digital filter. The corresponding continuous-
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domain description of its impulse response is

Ld±(r ) =
!

k ! Zd

dL[k ]±(r " k )

with some appropriate weights dL. To fix ideas, Ld may correspond to the numerical
version of the operator provided by the finite-difference method of approximating
derivatives.

The interest is now to characterize the (approximate) decoupling effect of this dis-
crete version of the whitening operator. This is quite feasible when the continuous-
domain composition of the operators Ld and L" 1 is shift-invariant with impulse re-
sponse ØL(r ) which is assumed to be absolutely integrable (BIBO stability). In that
case, one readily finds that

u (r ) = Lds(r ) = (ØL # w )(r ) (2.1)

where

ØL(r ) = LdL" 1±(r ). (2.2)

This suggests that the decoupling effect will be the strongest when the convolution
kernel ØL is the most localized (minimum support) and closest to an impulse 1. We
call ØL the generalized B-spline associated with the operator L. For a given operator
L, the challenge will be to design the most localized kernel ØL, which is the way of
approaching the discretization problem that best matches our statistical objectives.
The good news is that this is a standard problem in spline theory, meaning that we
can take advantage of the large body of techniques available in this area, even though
they have been hardly applied to the stochastic setting so far.

2.1.2 Wavelet analysis

The second option is to analyze the signal s using wavelet-like functions {√i (á"
r k )}. For that purpose, we assume that we have at our disposal some real-valued “L-
compatible” generalized waveletswhich, at a given resolution level i , are such that

√i (r ) = L#¡i (r ). (2.3)

Here, L# is the adjoint operator of L and ¡i is some smoothing kernel with good loc-
alization properties. The interpretation is that the wavelet transform provides some
kind of multiresolution version of the operator L with the effective width of the ker-
nels ¡i increasing in direct proportion to the scale; typically, ¡i (r ) $ ¡0(r /2i ). Then,
the wavelet analysis of the stochastic process s reduces to

%s,√i (á" r 0)&= %s,L#¡i (á" r 0)&

= %Ls,¡i (á" r 0)&

= %w ,¡i (á" r 0)&= (¡'
i # w )(r 0) (2.4)

1. One may be tempted to pretend that ØL is a Dirac impulse, which amounts to neglecting all discret-
ization effects. Unfortunately, this is incorrect and most likely to result in false statistical conclusions. In
fact, we shall see that the localization deteriorates as the order of the operator increases, inducing higher
(Markov) orders of dependencies.
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where ! !
i (r ) = ! i (" r ) is the reversed version of ! i . The remarkable aspect is that

the effect is essentially the same as in (2.1) so that it makes good sense to develop a
common framework to analyze white noise.

This is all nice in principle as long as one can construct ÒL-compatibleÓ wave-
let bases. For instance, if L is a pure nth-order derivative operatorÑor by exten-
sion, a scale-invariant differential operatorÑthen the above reasoning is directly ap-
plicable to conventional wavelets bases. Indeed, these are known to behave like
multiscale versions of derivatives due to their vanishing-moment property [Mey90,
Dau92, Mal09]. In prior work, we have linked this behavior, as well as a number
of other fundamental wavelet properties, to the polynomial B-spline convolutional
factor that is necessarily present in every wavelet that generates a multiresolution
basis of L2(R) [UB03]. What is not so widely known is that the spline connection ex-
tends to a much broarder variety of operatorsÑnot necessarily scale-invariantÑand
that it also provides a general recipe for constructing wavelet-like basis functions that
are matched to some given operator L. This has been demonstrated in 1D for the en-
tire family of ordinary differential operators [KU06]. The only signiÞcant difference
with the conventional theory of wavelets is that the smoothing kernels ! i are not
necessarily rescaled versions of each other.

Note that the ÒL-compatibleÓ property is relatively robust. For instance, if L = L#L0,
then an ÒL-compatibleÓ wavelet is also L#-compatible with ! #

i = L0! i . The design
challenge in the context of stochastic modeling is thus to come up with a suitable
wavelet basis such that ! i in (2.3) is most localizedÑpossibly, of compact support.

2.2 Organization of the monograph

The reasoning of Section 2.1 is appealing because of its conceptual simplicity and
generality. Yet, the precise formulation of the theory requires some special care be-
cause the underlying stochastic objects are inÞnite-dimensional and possibly highly
singular. For instance, we are faced with a major difÞculty at the onset because the
continuous-domain input of our model (the innovation w ) does not admit a conven-
tional interpretation as a function of the domain variable r . This entity can only be
probed indirectly by forming scalar products with test functions in accordance with
Laurent SchwartzÕ theory of distributions, so that the use of advanced mathematics
is unavoidable.

For the beneÞt of readers who would be unfamiliar with concepts used in this
book, we provide the relevant mathematical background in Chapter 3, which also
serves the purpose of introducing the notation. The Þrst part is devoted to the deÞn-
ition of the relevant function spaces, with special emphasis on generalized functions
(a.k.a. tempered distributions) which play a central role in our formulation. The
second part reviews the classical, Þnite-dimensional tools of probability theory and
shows how some concepts (e.g., characteristic function, BochnerÕs theorem) are ex-
tendable to the inÞnite-dimensional setting within the framework of GelfandÕs theory
of generalized stochastic processes [GV64].
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Chapter 4 is devoted to the mathematical speciÞcation of the innovation model.
Since the theory gravitates around the notion of LŽvy exponents, we start with a sys-
tematic investigation of such functions, denoted by f (! ), which are fundamental to
the (classical) study of inÞnitely divisible probability laws. In particular, we discuss
their canonical representation given by the LŽvy-Khintchine formula. In Section 4.4,
we make use of the powerful Minlos-Bochner theorem to transfer those representa-
tions to the inÞnite-dimensional setting. The fundamental result of our theory is that
every admissible continuous-domain innovation for the model in Figure 2.1 belongs
to the so-called family of white LŽvy noises. This implies that an innovation pro-
cess is completely characterized by its LŽvy exponent f (! ). We conclude the chapter
with the presentation of mathematical criteria for the existence of solutions of LŽvy-
driven SDEs (stochastic differential equations) and provide the functional tools for
the complete statistical characterization of these processes. Interestingly, the clas-
sical Gaussian processes are covered by the formulation (by setting f (! ) = ! 1

2 ! 2),
but they turn out to be the only non-sparse members of the family.

Besides the random excitation w , the second fundamental component of the in-
novation model in Figure 2.1 is the inverse L ! 1 of the whitening operator L. It must
fulÞll some continuity/boundedness condition in order to yield a proper solution of
the underlying SDE. The construction of such inverses (shaping Þlters) is the topic
of Chapter 5, which presents a systematic catalog of the solutions that are currently
available, including recent constructs for scale-invariant/unstable SDEs.

In Chapter 6, we review the tools that are available from the theory of splines in
relation to the speciÞcation of the analysis kernels in Equations (2.1) and (2.3). The
techniques are quite generic and applicable to any operator L that admits a proper
inverse L! 1. Moreover, by writing a generalized B-spline as " L = LdL! 1#, one can
appreciate that the construction of a B-spline for some operator L implicitly provides
the solution of two innovation-related problems at once: 1) the formal inversion of
the operator L (for solving the SDE) and 2) the proper discretization of L through
a Þnite-difference scheme. The leading thread in our formulation is that these two
tasks should not be dissociatedÑthis is achieved formally via the identiÞcation of " L

which actually results in simpliÞed and streamlined mathematics. Remarkably, these
generalized B-splines are also the key for constructing wavelet-like basis functions
that are ÒL-compatible.Ó

In Chapter 7, we apply our framework to the functional speciÞcation of a variety
of generalized stochastic processes, including the classical family of Gaussian sta-
tionary processes and their sparse counterparts. We also characterize non-stationary
processes that are solutions of unstable SDEs. In particular, we describe higher-order
extensions of LŽvy processes, as well as a whole variety of fractal-type processes.

In Chapter 8, we rely on our functional characterization to obtain a maximally-
decoupled representation of sparse stochastic processes by application of the dis-
cretized version of the whitening operator or by suitable wavelet expansion. Based
on the characteristic form of these processes, we are able to deduce the transform-
domain statistics and to precisely assess residual dependencies. These ideas are il-
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lustrated with examples of sparse processes for which operator-like wavelets outper-
form the classical KLT (or DCT) and result in an independent component analysis.

An implicit property of the innovation model is that the statistical distribution of
the inner product between a sparse stochastic process and a particular basis function
(e.g., wavelet) is uniquely characterized by a ÒmodiÞedÓ LŽvy exponent. Our main
point in Chapter 9 is to use this result to show that the sparsity of the input noise
is transferred to the transformed domain. Apart from a shaping effect that can be
quantiÞed, the resulting probability density function remains within the same family
of inÞnite-divisible laws.

In the Þnal part of the book, we illustrate the use of these stochastic models (and
the corresponding analytical tools) with the formulation of algorithms for the re-
covery of signals and images from incomplete, noisy measurements. In Chapter
10, we develop a general framework for the discretization of linear inverse prob-
lems in a B-spline basis, which is analogous to the Þnite-element method for solving
PDEs. The central element is the ÒprojectionÓ of the continuous-domain stochastic
model onto the (Þnite dimensional) reconstruction space in order to specify the prior
statistical distribution of the signal. This naturally yields the maximum a posteri-
ori solution to the signal-reconstruction problem. The framework is illustrated with
the derivation of practical algorithms for magnetic resonance imaging, deconvolu-
tion microscopy, and tomographic reconstruction. Remarkably, the resulting MAP
estimators are compatible with the non-quadratic regularization schemes (e.g., ! 1-
minimization, LASSO, and/or non-convex ! p relaxation) that are currently in favor in
imaging. To get a handle on the quality of the reconstruction, we then rely on the in-
novation model to investigate the extent to which one is able to ÒoptimallyÓ denoise
sparse signals. In particular, we demonstrate the feasibility of MMSE reconstruction
when the signal belongs to the class of LŽvy processes, which provides us with a gold
standard against which to compare other algorithms.

In Chapter 11, we present alternative wavelet-based reconstruction methods that
are typically faster than the Þxed-scale techniques of Chapter 10. These methods
capitalize on the orthonormality of the wavelet basis which provides a direct control
of the norm of the signal. We show that the underlying optimization task is amenable
to iterative thresholding algorithms (ISTA or FISTA) which are simple to deploy and
well-suited for large-scale problems. We also investigate the effect of cycle spinning,
which is a fundamental ingredient for making wavelets competitive in terms of im-
age quality. Our closing topic is the use of statistical modeling for the improvement
of standard wavelet-based denoisingÑin particular, the optimization of the wavelet-
domain thresholding functions and the search of a consensus solution across mul-
tiple wavelet expansions in order to minimize the global estimation error.


