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Preface

During the past decade, there has been a signiÞcant shift in paradigm in signal
processing, statistics, and applied mathematics that revolves around the concept of
sparsity and the search for ÒsparseÓ representations of signals. Early signs of this
(r)evolution go back to the discovery of wavelets, which have now superseded clas-
sical Fourier techniques in a number of applications. The other manifestation of
this trend is the emergence of data-processing schemes that minimize an `1 norm
as opposed to the squared `2 norm associated with the traditional linear methods. A
highly popular research topic that capitalizes on those ideas is compressed sensing.
It is the quest for a statistical framework that would support this change of paradigm
that led us to the writing of this book.

The cornerstone of our formulation is the classical innovation model which is
equivalent to the speciÞcation of stochastic processes as solutions of linear stochastic
differential equations (SDE). The nonstandard twist here is that we allow for non-
Gaussian driving terms (white LŽvy noise) which, as we shall see, has a dramatic ef-
fect on the type of signal being generated. A fundamental property, hinted in the title
of the book, is that the non-Gaussian solutions of such SDEs admit a sparse repres-
entation in an adapted wavelet-like basis. While a sizable part of the present mater-
ial is an outgrowth of our own research, it is founded on the work of LŽvy (1930) and
Gelfand (arguably, the second most famous Soviet mathematician after Kolmogorov)
who derived general functional tools and results that are hardly known by practi-
tioners but, as we argue in the book, are extremely relevant to the issue of sparsity.
The other important source of inspiration is spline theory and the observation that
splines and stochastic processes are ruled by the same differential equations. This
is the reason why we opted for the innovation approach which facilitates the trans-
position of analytical techniques from one Þeld to the other. While the formulation
requires advanced mathematics that are carefully explained in the book, the underly-
ing model has a strong engineering appeal since it constitutes the natural extension
of the traditional Þltered-white-noise interpretation of a Gaussian stationary process.

The book assumes that the reader has a good understanding of linear systems
(ordinary differential equations, convolution), Hilbert spaces, generalized functions
(i.e., inner products, Dirac impulses, linear operators), the Fourier transform, ba-
sic statistical signal processing, and (multivariate) statistics (probability density and
characteristic functions). By contrast, there is no requirement for prior knowledge of
splines, stochastic differential equations, and advanced functional analysis (function
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spaces, Bochner’s theorem, operator theory, singular integrals) since these topics are
treated in a self-contained fashion.

Several people have had a crucial role in the genesis of this book. The idea of defin-
ing sparse stochastic processes originated during the preparation of a talk for Mar-
tin Vetterli’s 50th birthday (which coincided with the anniversary of the launching
of Sputnik) in an attempt to build a bridge between his signals with a finite rate of
innovation and splines. We thank him for his long-time friendship and for convin-
cing us to undertake this writing project. We are grateful to our former collaborator,
Thierry Blu, for his precious help in the elucidation of the functional link between
splines and stochastic processes. We are extremely thankful to Arash Amini, Julien
Fageot, Pedram Pad, Qiyu Sun, and John-Paul Ward for many helpful discussions
and their contributions to mathematical results. We are indebted to Emrah Bostan,
Ulugbek Kamilov, Hagai Kirshner, Masih Nilchian, and Cédric Vonesch for turning
the theory into practice and for running the signal- and image-processing experi-
ments described in Chapters 10 and 11. We are most grateful to Philippe Thévenaz
for his intelligent editorial advice and his spotting of multiple errors and inconsist-
encies, while we take full responsibility for the remaining ones. We also thank Phil
Meyler and Sarah Marsh from Cambridge University Press.

The European Research Commission (ERC) and the Swiss National Science Found-
ation provided partial support throughout the writing of the book.



Summary

Sparse stochastic processes are continuous-domain processes that admit a parsi-
monious representation in some matched wavelet-like basis. Such models are relev-
ant for image compression, compressed sensing, and, more generally, for the deriva-
tion of statistical algorithms for solving ill-posed inverse problems.

This book introduces an extended family of sparse processes that are specified by
a generic (non-Gaussian) innovation model or, equivalently, as solutions of linear
stochastic differential equations driven by white Lévy noise. It presents the math-
ematical tools for their characterization. The two leading threads of the exposition
are

– the statistical property of infinite divisibility, which induces two distinct types
of behavior—Gaussian vs. sparse—at the exclusion of any other;

– the structural link between linear stochastic processes and spline functions which
is exploited to simplify the mathematical analysis.

The core of the book is devoted to the investigation of sparse processes, including
the complete description of their transform-domain statistics. The final part devel-
ops signal-processing techniques that are based on these models. This leads to a
reinterpretation of popular sparsity-promoting processing schemes—such as total-
variation denoising, LASSO, and wavelet shrinkage—as MAP estimators for specific
types of sparse processes. It also suggests alternative Bayesian recovery procedures
that minimize the estimation error. The framework is illustrated with the reconstruc-
tion of biomedical images (deconvolution microscopy, MRI, X-ray tomography) from
noisy and/or incomplete data.

The book is mostly self-contained. It is targeted to an audience of graduate stu-
dents and researchers with an interest in signal/image processing, compressed sens-
ing, approximation theory, machine learning, and statistics.
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ADMM Alternating-direction method of multipliers
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# Fractional derivative of order " ! R+ and phase #

(" ! )
"
2 Fractional Laplacian of order " ! R+

I" #
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